Hadoop是一个高容错、高延时的分布式文件系统和高并发的批处理系统,不适用于提供实时计算;HBase是可以提供实时计算的分布式数据库,数据被保存在Hadoop HDFS分布式文件系统上,由HDFS保证期高容错性,但是再生产环境中,HBase是如何基于hadoop提供实时性呢? 前面的章节已经介绍过,hbase上的数据是以storefile(HFile)二进制流的形式存储在HDFS上block块儿中;但是HDFS并不知道的hbase存的是什么,它只把存储文件是为二进制文件,也就是说,hbase的存储数据对于HDFS文件系统是透明的。 {{:pasted:20151001-221709.png}} ===== memstore缓存 ===== HBase HRegion servers集群中的所有的region的数据在服务器启动时都是被打开的,并且在内冲初始化一些memstore,相应的这就在一定程度上加快系统响应;而Hadoop中的block中的数据文件默认是关闭的,只有在需要的时候才打开,处理完数据后就关闭,这在一定程度上就增加了响应时间。 从根本上说,HBase能提供实时计算服务主要原因是由其架构和底层的数据结构决定的,即由LSM-Tree(Log-Structured Merge-Tree) + HTable(region分区) + Cache决定——客户端可以直接定位到要查数据所在的HRegion server服务器,然后直接在服务器的一个region上查找要匹配的数据,并且这些数据部分是经过cache缓存的。具体查询流程如下图所示: {{:pasted:20151001-221758.png}} ===== 查询流程 ===== * Client会通过内部缓存的相关的-ROOT-中的信息和.META.中的信息直接连接与请求数据匹配的HRegion server; * 然后直接定位到该服务器上与客户请求对应的region,客户请求首先会查询该region在内存中的缓存——memstore(memstore是是一个按key排序的树形结构的缓冲区); * 如果在memstore中查到结果则直接将结果返回给client; * 在memstore中没有查到匹配的数据,接下来会读已持久化的storefile文件中的数据。前面的章节已经讲过,storefile也是按key排序的树形结构的文件——并且是特别为范围查询或block查询优化过的,;另外hbase读取磁盘文件是按其基本I/O单元(即 hbase block)读数据的。具体就是过程就是: * 如果在BlockCache中能查到要造的数据则这届返回结果,否则就读去相应的storefile文件中读取一block的数据,如果还没有读到要查的数据,就将该数据block放到HRegion Server的blockcache中,然后接着读下一block块儿的数据,一直到这样循环的block数据直到找到要请求的数据并返回结果;如果将该region中的数据都没有查到要找的数据,最后接直接返回null,表示没有找的匹配的数据。当然blockcache会在其大小大于一的阀值(heapsize * hfile.block.cache.size * 0.85)后启动基于LRU算法的淘汰机制,将最老最不常用的block删除。