yarn将资源管理从原来的mapredurce中独立出来,形成了一套与计算框架无关的资源调度管理系统。供各种框架(mapredurce,storm)使用。yarn主要有2个管理组件,一个全局的资源管理器 ResourceManager 和每个应用程序特有的 ApplicationMaster。其中 ResourceManager 负责整个系统的资源管理和分配,而 ApplicationMaster 负责单个应用程序的管理
RM 是一个全局的资源管理器,负责整个系统的资源管理和分配。它主要由两个组件 构成:调度器(Scheduler)和应用程序管理器(Applications Manager,ASM)。
调度器根据容量、队列等限制条件(如每个队列分配一定的资源,最多执行一定数量 的作业等),将系统中的资源分配给各个正在运行的应用程序。需要注意的是,该调度器是 一个“纯调度器”,它不再从事任何与具体应用程序相关的工作,比如不负责监控或者跟踪 应用的执行状态等,也不负责重新启动因应用执行失败或者硬件故障而产生的失败任务, 这些均交由应用程序相关的 ApplicationMaster 完成。调度器仅根据各个应用程序的资源需 求进行资源分配,而资源分配单位用一个抽象概念“资源容器”(Resource Container,简 称 Container)表示,Container 是一个动态资源分配单位,它将内存、CPU、磁盘、网络等 资源封装在一起,从而限定每个任务使用的资源量。此外,该调度器是一个可插拔的组件, 用户可根据自己的需要设计新的调度器,YARN 提供了多种直接可用的调度器,比如 Fair Scheduler 和 Capacity Scheduler 等。
应用程序管理器负责管理整个系统中所有应用程序,包括应用程序提交、与调度器协商 资源以启动 ApplicationMaster、监控 ApplicationMaster 运行状态并在失败时重新启动它等。
用户提交的每个应用程序均包含一个 AM,主要功能包括:
描述一系列信息
Container 是 YARN 中的资源抽象,它封装了某个节点上的多维度资源,如内存、 CPU、磁盘、网络等,当 AM 向 RM 申请资源时,RM 为 AM 返回的资源便是用 Container 表示的。YARN 会为每个任务分配一个 Container,且该任务只能使用该 Container 中描述的 资源。需要注意的是,Container 不同于 MRv1 中的 slot,它是一个动态资源划分单位,是 根据应用程序的需求动态生成的。截至本书完成时,YARN 仅支持 CPU 和内存两种资源, 且使用了轻量级资源隔离机制 Cgroups 进行资源隔离  。